ON PARTITIONING THE ORBITALS OF A TRANSITIVE PERMUTATION GROUP

CAI HENG LI AND CHERYL E. PRAEGER

Abstract. Let G be a permutation group on a set Ω with a transitive normal subgroup M. Then G acts on the set $\mathrm{Orbl}(M,\Omega)$ of nontrivial M-orbitals in the natural way, and here we are interested in the case where $\mathrm{Orbl}(M,\Omega)$ has a partition \mathcal{P} such that G acts transitively on \mathcal{P} . The problem of characterising such tuples $(M, G, \Omega, \mathcal{P})$, called TODs, arises naturally in permutation group theory, and also occurs in number theory and combinatorics. The case where $|\mathcal{P}|$ is a prime-power is important in algebraic number theory in the study of arithmetically exceptional rational polynomials. The case where $|\mathcal{P}| = 2$ exactly corresponds to self-complementary vertex-transitive graphs, while the general case corresponds to a type of isomorphic factorisation of complete graphs, called a homogeneous factorisation. Characterising homogeneous factorisations is an important problem in graph theory with applications to Ramsey theory. This paper develops a framework for the study of TODs, establishes some numerical relations between the parameters involved in TODs, gives some reduction results with respect to the G-actions on Ω and on \mathcal{P} , and gives some construction methods for TODs.

1. Introduction

Each transitive permutation group M on a set Ω has a natural induced action on the set

$$\Omega^{(2)} = (\Omega \times \Omega) \setminus \{(\alpha, \alpha) \mid \alpha \in \Omega\} = \{(\alpha, \beta) \mid \alpha \neq \beta \in \Omega\},\$$

given by $(\alpha, \beta)^x = (\alpha^x, \beta^x)$ for $\alpha, \beta \in \Omega$ with $\alpha \neq \beta$ and $x \in M$. The M-orbits in $\Omega^{(2)}$ are called M-orbitals on Ω , and a partition \mathcal{P} of $\Omega^{(2)}$ is called an M-orbital decomposition if each class $P \in \mathcal{P}$ is a union of one or more M-orbitals. Let $\mathrm{Orbl}(M,\Omega)$ denote the set of M-orbits in $\Omega^{(2)}$. In this paper we investigate the situation where $M < G \leq \mathrm{Sym}(\Omega)$, and G induces a transitive action on an M-orbital decomposition \mathcal{P} of $\Omega^{(2)}$; that is to say, we assume

- (i) for all $P \in \mathcal{P}$ and $q \in G$, $P^g \in \mathcal{P}$,
- (ii) for $P, P' \in \mathcal{P}$, there exists $g \in G$ such that $P^g = P'$, and
- (iii) \mathcal{P} is refined by $Orbl(M, \Omega)$.

If these conditions hold, then we call the tuple $(M, G, \Omega, \mathcal{P})$ a transitive orbital decomposition, or a TOD for short. The cardinalities $|\Omega|$ and $|\mathcal{P}|$ are called the degree and the index of the TOD, and sometimes we refer to $(M, G, \Omega, \mathcal{P})$ as a k-TOD if $k = |\mathcal{P}|$.

Received by the editors October 23, 2001.

 $2000\ Mathematics\ Subject\ Classification.\ Primary\ 20B15,\ 20B30,\ 05C25.$

This work forms a part of an Australian Research Council grant project.

Interest in transitive orbital decompositions has arisen from several different areas. The case k=2 corresponds to self-complementary graphs, which are discussed in more detail below. The case where k is a prime-power arose also in algebraic number theory in the study of arithmetically exceptional rational polynomials [11]. (See [7] for the more general context of these investigations.)

Assume that k=2. Then the two classes P,P' in \mathcal{P} can be regarded as the edge sets of directed graphs (digraphs) $\Gamma=(\Omega,P)$ and $\Gamma'=(\Omega,P')$ such that the group M is a vertex-transitive automorphism group of both Γ and Γ' , and each $g\in G$ that interchanges P and P' induces a graph isomorphism between Γ and Γ' . Thus Γ , Γ' is a pair of self-complementary vertex-transitive digraphs. Moreover, if \mathcal{P} is symmetric, in the sense that each $P\in \mathcal{P}$ is equal to its reverse $P^*=\{(\beta,\alpha)\mid (\alpha,\beta)\in P\}$, and if \mathcal{P} has index k=2, then the two graphs Γ,Γ' may be considered as undirected self-complementary graphs, namely, $\Gamma=(\Omega,E)$ and $\Gamma'=(\Omega,E')$, where the edge sets E,E' are the sets of unordered pairs $\{\alpha,\beta\}$ from Ω with (α,β) in P,P', respectively.

The study of vertex-transitive self-complementary graphs began with a construction of a family of self-complementary circulant graphs given by H. Sachs [24]. Vertex-transitive self-complementary graphs have received considerable attention in the literature, see for example [14, 17, 18, 20, 25, 27], and they have been used to investigate Ramsey numbers [3, 4, 5]. Most of the known vertex-transitive self-complementary graphs are Cayley graphs, see for example [14, 18, 25, 19, 23]; the first infinite family of vertex-transitive self-complementary graphs that are not Cayley graphs was constructed recently in [17]. With regard to TODs of arbitrary index k, we give necessary and sufficient conditions for the existence of a k-TOD in Proposition 3.3, and the proof of this result includes a general construction for them. Explicit constructions are given in Section 6.

A lot of effort was expended in determining the positive integers n such that there exist vertex-transitive self-complementary graphs with n vertices, see [1, 8, 15, 20, 27], and recently, Muzychuk [20] completely determined such positive integers. One of the major results of this paper, Theorem 1.1, is a generalisation of Muzychuk's result. A k-TOD $(M, G, \Omega, \mathcal{P})$ is called cyclic if the transitive permutation group $G^{\mathcal{P}}$ induced by G on \mathcal{P} is cyclic. Thus a pair of vertex-transitive self-complementary digraphs corresponds to a cyclic 2-TOD. Our result classifies the possibilities for the degree of a cyclic k-TOD, and the case k = 2 is the result of Muzychuk [20].

Theorem 1.1. Let k be an integer such that k > 1, and let $n = r_1^{d_1} r_2^{d_2} \dots r_m^{d_m}$, where the r_i are distinct primes, $d_i \ge 1$, and $m \ge 1$. Then

- (i) there exists a cyclic k-TOD of degree n if and only if, for all i = 1, ..., m, $r_i^{d_i} \equiv 1 \pmod{k}$;
- (ii) there exists a cyclic symmetric k-TOD of degree n if and only if, for all i = 1, 2, ..., m,

$$r_i^{d_i} \equiv 1 \pmod{2k}$$
 if r_i is odd, or $r_i^{d_i} \equiv 1 \pmod{k}$ if $r_i = 2$.

For a transitive group $M \leq \operatorname{Sym}(\Omega)$, let $M^{(2)}$ denote the 2-closure of M in the sense of Wielandt; that is, $M^{(2)}$ is the largest subgroup of $\operatorname{Sym}(\Omega)$ with the same orbits as M in $\Omega^{(2)}$. One way that a subgroup $G \leq \operatorname{Sym}(\Omega)$ may leave invariant a partition refined by $\operatorname{Orbl}(M,\Omega)$ is if G permutes the M-orbitals setwise. We show

(Proposition 2.1) that a subgroup $G \leq \operatorname{Sym}(\Omega)$ leaves the set $\operatorname{Orbl}(M,\Omega)$ invariant (that is, $\Delta^g \in \operatorname{Orbl}(M,\Omega)$ for all $\Delta \in \operatorname{Orbl}(M,\Omega)$ and all $g \in G$) if and only if G normalises $M^{(2)}$. However, whether or not G leaves $\operatorname{Orbl}(M,\Omega)$ invariant in a TOD (M,G,Ω,\mathcal{P}) , we may always replace M by the kernel \hat{M} of the action of G on \mathcal{P} , and thereby obtain a TOD $(\hat{M},G,\Omega,\mathcal{P})$ with \hat{M} normal in G. From Subsection 2.2 onwards we shall always assume that M is normalised by G. We begin by presenting in Section 2 several elementary properties of TODs and in Section 3 constructions of new TODs from a given TOD. Some of these constructions yield examples of cyclic TODs.

If $(M, G, \Omega, \mathcal{P})$ is a k-TOD and \mathcal{B} is a nontrivial block system for G in Ω , then the induced structure $(M_B^B, G_B^B, B, \mathcal{P}_B)$ on a block $B \in \mathcal{B}$ is also a k-TOD (Lemma 4.1), but there seems to be no natural induced TOD corresponding to the actions of M and G on \mathcal{B} (see Subsection 4.2). However, for cyclic k-TODs, we are able to induce a cyclic k-TOD for the quotient action on \mathcal{B} .

Theorem 1.2. Let $(M, G, \Omega, \mathcal{P})$ be a cyclic k-TOD. Then for any G-invariant partition \mathcal{B} of Ω , there exists a partition \mathcal{Q} of $\mathcal{B}^{(2)}$ such that $(M^{\mathcal{B}}, G^{\mathcal{B}}, \mathcal{B}, \mathcal{Q})$ is a cyclic k-TOD.

This theorem will be proved in Section 3. It raises the question of classifying cyclic k-TODs $(M, G, \Omega, \mathcal{P})$ with G primitive on Ω . For the case where k is a prime-power, a classification is given in [10]. In Section 4 we give several constructions of cyclic TODs proving the existence assertions of Theorem 1.1, and we complete the proof of Theorem 1.1 in Section 5.

1.1. Further graph-theoretic links. From another viewpoint, a symmetric TOD of degree n is a special type of isomorphic factorisation of the complete graph K_n on n vertices. An isomorphic factorisation of K_n with vertex set V is a decomposition $\{E_1, \ldots, E_k\}$ of the unordered pairs of vertices such that the k graphs $(V, E_1), \ldots, (V, E_k)$ are pairwise isomorphic; the graphs (V, E_i) are called the factors of the factorisation. Isomorphic factorisations of complete graphs have been investigated for a long time, see for instance [12, 13]. If $(M, G, \Omega, \mathcal{P})$ is a symmetric k-TOD of degree n and if $E_i = \{\{x,y\} \mid (x,y) \in P_i\}$ where $\mathcal{P} = \{P_1, \ldots, P_k\}$, then $\{E_1, \ldots, E_n\}$ is an isomorphic factorisation of K_n with vertex set Ω with the additional property that the group G permutes $\{E_1, \ldots, E_k\}$ transitively. Thus, isomorphisms between each pair (V, E_i) and (V, E_j) can be induced by elements of G. Isomorphic factorisations of K_n with this property are called homogeneous factorisations.

We end this section with a discussion of two special classes of TODs. Let $(M, G, \Omega, \mathcal{P})$ be a k-TOD such that $\mathcal{P} = \operatorname{Orbl}(M, \Omega)$, that is, \mathcal{P} is a trivial partition of $\operatorname{Orbl}(M, \Omega)$. It then follows that G is a 2-transitive permutation group on Ω , and M is a permutation group of rank k+1. By Proposition 2.1, we may assume that G contains $M^{(2)}$, and then $M^{(2)}$ is a normal subgroup of G of rank k+1. Inspecting the classification of 2-transitive permutation groups, see [2], we see that either G is affine, or $M \cong \operatorname{PSL}_2(8)$ and $G \cong \operatorname{Aut}(\operatorname{PSL}_2(8))$. The latter indeed gives rise to a 3-TOD $(M, G, \Omega, \mathcal{P})$ such that $\mathcal{P} = \operatorname{Orbl}(M, \Omega)$, which is symmetric and has degree 28. This, in particular, shows that the complete graph K_{28} may be factorised into three isomorphic arc-transitive graphs of valency 9. Further, this, together with Theorem 1.1, also shows that a complete graph K_n having a nontrivial homogeneous factorisation with M-arc-transitive factors implies that n is a

prime-power or n = 28. The special case where k = 2 corresponds to arc-transitive self-complementary graphs, which are classified in [21, 28].

A more general interesting class of TODs is the class of homogeneous factorisations of complete graphs with edge-transitive factors. This corresponds to the class of symmetric k-TODs $(M, G, \Omega, \mathcal{P})$ such that each $P_i \in \mathcal{P}$ is an orbital, or a union of two paired orbitals of M^{Ω} . In this case, it follows that we can take G to be a 2-homogeneous permutation group on Ω with a transitive normal subgroup $M^{(2)}$ of rank k+1. The TOD arising from PSL₂(8) is also an example for this case.

In subsequent work [16], a complete description will be given of homogeneous factorisations of complete graphs with arc-transitive or edge-transitive factors.

2. General properties of TODs

2.1. On the normality of M. Some TODs $(M, G, \Omega, \mathcal{P})$ arise with the group G having an induced action on the set $\mathrm{Orbl}(M,\Omega)$ of M-orbitals. This condition is not part of the definition of a TOD. However, we do not have any examples where it does not hold. We first prove the result mentioned in the introduction, which relates this property to the 2-closure of M.

Proposition 2.1. Let M be a transitive permutation group on a set Ω . Then a subgroup $G \leq \operatorname{Sym}(\Omega)$ leaves $\operatorname{Orbl}(M,\Omega)$ invariant if and only if G normalises $M^{(2)}$.

Proof. Suppose that G normalises $M^{(2)}$. Let $g \in G$ and $\Delta \in \mathrm{Orbl}(M,\Omega)$. We need to prove that $\Delta^g \in \mathrm{Orbl}(M,\Omega)$. For $x \in M$, we have $x^{g^{-1}} \in M^{(2)}$, and hence $\Delta^{gxg^{-1}} = \Delta^{x^{g^{-1}}} = \Delta$. So $\Delta^{gx} = \Delta^g$, that is, Δ^g is M-invariant. For any $(\alpha,\beta),(\gamma,\delta)\in\Delta$, there exists $x\in M$ such that $(\alpha,\beta)^x=(\gamma,\delta)$. Now $g^{-1}xg\in M^{(2)}$, $(\alpha^g,\beta^g),(\gamma^g,\delta^g)\in\Delta^g$, and $(\alpha^g,\beta^g)^{g^{-1}xg}=(\gamma^g,\delta^g)$. It follows that $M^{(2)}$ is transitive on Δ^g , and so Δ^g is an $M^{(2)}$ -orbital. Thus by the definition of $M^{(2)}$, $\Delta^g\in\mathrm{Orbl}(M,\Omega)$, and hence G leaves $\mathrm{Orbl}(M,\Omega)$ invariant.

Conversely, suppose that G leaves $\operatorname{Orbl}(M,\Omega)$ invariant. Let $x \in M^{(2)}$ and $g \in G$. We claim that $x^g \in M^{(2)}$. Take an arbitrary element $\Delta \in \operatorname{Orbl}(M,\Omega)$. Then $\Delta^{g^{-1}} \in \operatorname{Orbl}(M,\Omega)$, and hence $(\Delta^{g^{-1}})^x = \Delta^{g^{-1}}$. Therefore, $\Delta^{x^g} = \Delta^{g^{-1}xg} = \Delta$, and so x^g fixes every element of $\operatorname{Orbl}(M,\Omega)$. Thus $x^g \in M^{(2)}$, and so G normalises $M^{(2)}$.

If $(M, G, \Omega, \mathcal{P})$ is a k-TOD and G normalises $M^{(2)}$, then $(M^{(2)} \cap G, G, \Omega, \mathcal{P})$ is also a k-TOD, and by Lemma 2.1, $M^{(2)} \cap G$ is a normal subgroup of G. Whether or not this is the case, if \hat{M} is the kernel of the action of G on \mathcal{P} , then $(\hat{M}, G, \Omega, \mathcal{P})$ is a k-TOD. We will assume from now on that, for a k-TOD $(M, G, \Omega, \mathcal{P})$, the group M is a normal subgroup of G. Moreover, we note the following.

Lemma 2.2. Let $(M, G, \Omega, \mathcal{P})$ be a k-TOD, and let K be the kernel of the G-action on \mathcal{P} . Assume that N is a normal subgroup of G such that $N \leq K$ and N is transitive on Ω . Then $(N, G, \Omega, \mathcal{P})$ is a k-TOD.

Proof. This is clear from the definition of TODs.

2.2. **TODs and partitions of** Ω . Choose a point $\omega \in \Omega$. Now we give a relation between a partition of $\Omega^{(2)}$ and a partition of $\Omega \setminus \{\omega\}$. For a partition $\mathcal{P} = \{P_1, P_2, \dots, P_k\}$ of $\Omega^{(2)}$, let $P_i(\omega) = \{\omega' \in \Omega \mid (\omega, \omega') \in P_i\}$, and let

 $\mathcal{P}(\omega) = \{P_1(\omega), P_2(\omega), \dots, P_k(\omega)\}$. Let M be a transitive permutation group on Ω , and let $\mathcal{P} = \{P_1, P_2, \dots, P_k\}$ be a partition of $\Omega^{(2)}$ refined by $\operatorname{Orbl}(M, \Omega)$. Then $\mathcal{P}(\omega)$ is a partition of $\Omega \setminus \{\omega\}$ refined by the set of M_ω -orbits in $\Omega \setminus \{\omega\}$. Conversely, if $\mathcal{P}(\omega)$ is a partition of $\Omega \setminus \{\omega\}$ refined by the set of M_ω -orbits in $\Omega \setminus \{\omega\}$, then we obtain a partition \mathcal{P} of $\Omega^{(2)}$ refined by $\operatorname{Orbl}(M, \Omega)$, by defining $\mathcal{P} = \{P_1, \dots, P_k\}$ with $P_i = \{(\omega, \omega')^g \in \Omega^{(2)} \mid \omega' \in P_i(\omega), g \in M\}$. The next lemma shows that for an overgroup G of M that leaves \mathcal{P} invariant, the G-action on \mathcal{P} is equivalent to the G_ω -action on $\mathcal{P}(\omega)$. Whenever a group G has an action on a set \mathcal{P} we shall denote by $G^\mathcal{P}$ the permutation group on \mathcal{P} induced by G.

Lemma 2.3. Let M be a transitive permutation group on Ω , and suppose that \mathcal{P} is a partition of $\Omega^{(2)}$ refined by $\operatorname{Orbl}(M,\Omega)$. Let G be such that $M \triangleleft G \leq \operatorname{Sym}(\Omega)$, and let $\omega \in \Omega$. Then

- (1) \mathcal{P} is G-invariant if and only if $\mathcal{P}(\omega)$ is G_{ω} -invariant;
- (2) in the case where \mathcal{P} is G-invariant, $G^{\mathcal{P}} = G^{\mathcal{P}}_{\omega}$ and the G_{ω} -actions on \mathcal{P} and $\mathcal{P}(\omega)$ are equivalent; in particular, G is transitive on \mathcal{P} if and only if G_{ω} is transitive on $\mathcal{P}(\omega)$, and thus $(M, G, \Omega, \mathcal{P})$ is a TOD if and only if G_{ω} is transitive on $\mathcal{P}(\omega)$.

Proof. Since M is transitive on Ω , $G = MG_{\omega}$, and thus each element $x \in G$ may be written as x = gy for some $g \in M$ and some $y \in G_{\omega}$. Then for $P_i, P_j \in \mathcal{P}$, $P_i^x = P_i^y = P_j$ if and only if $P_i(\omega)^y = P_j(\omega)$. Thus \mathcal{P} is G-invariant if and only if $\mathcal{P}(\omega)$ is G_{ω} -invariant. Moreover, since $G = MG_{\omega}$, we have $G^{\mathcal{P}} = G_{\omega}^{\mathcal{P}}$ and the G_{ω} -action on \mathcal{P} is equivalent to the G_{ω} -action on $\mathcal{P}(\omega)$. In particular, G is transitive on \mathcal{P} if and only if G_{ω} is transitive on $\mathcal{P}(\omega)$.

2.3. A congruence involving n and k. Lemma 2.3 implies a congruence relation that must be satisfied by the parameters n and k for k-TODs of degree n.

Lemma 2.4. Let $(M, G, \Omega, \mathcal{P})$ be a k-TOD, where $\mathcal{P} = \{P_1, P_2, \dots, P_k\}$. Then for each G_{ω} -orbit Δ in $\Omega \setminus \{\omega\}$, $\{\Delta \cap P_i(\omega) \mid 1 \leq i \leq k\}$ is a G_{ω} -invariant partition of Δ ; in particular, k divides $|\Delta|$.

Proof. By definition, \mathcal{P} is a G-invariant partition of $\Omega^{(2)}$. Thus by Lemma 2.3, $\mathcal{P}(\omega)$ is a G_{ω} -invariant partition of $\Omega \setminus \{\omega\}$. It follows, since G_{ω} fixes Δ setwise, that $\{\Delta \cap P_i(\omega) \mid 1 \leq i \leq k\}$ is a G_{ω} -invariant partition of Δ . Also, by Lemma 2.3, G_{ω} is transitive on $\mathcal{P}(\omega)$ and hence also on $\{\Delta \cap P_i(\omega) \mid 1 \leq i \leq k\}$. Thus the sets $\Delta \cap P_i(\omega)$ all have the same size; so $|\Delta|$ is divisible by k.

Lemma 2.5. For positive integers n and k, if there exists a k-TOD of degree n, then $n \equiv 1 \pmod{k}$, and in particular, k is coprime to n. Moreover, if the k-TOD is symmetric and n is odd, then $n \equiv 1 \pmod{2k}$.

Proof. Let $(M, G, \Omega, \mathcal{P})$ be a k-TOD of degree n, and let $\mathcal{P} = \{P_1, P_2, \dots, P_k\}$. By Lemma 2.4, it follows that k divides the length of each G_{ω} -orbit in $\Omega \setminus \{\omega\}$, and hence k divides n-1.

Now assume that \mathcal{P} is symmetric. Then each P_i is a symmetric relation on Ω , and so there are n(n-1)/(2k) unordered pairs $\{\alpha,\beta\}$ such that P_i contains (α,β) and (β,α) . If n is odd, then 2k is coprime to n since k is coprime to n, and thus (n-1)/(2k) is an integer, that is, $n \equiv 1 \pmod{2k}$.

3. Some construction methods for TODs

3.1. **TODs and partitions of** $\operatorname{Orbl}(M,\Omega)$. Suppose that (M,G,Ω,\mathcal{P}) is a k-TOD with $M \triangleleft G$. Then, for each G-orbit Q in $\operatorname{Orbl}(M,\Omega)$, the partition \mathcal{P} of $\Omega^{(2)}$ determines a partition $\mathcal{B}(Q) = \{B(P) \mid P \in \mathcal{P}\}$ of Q, where B(P) is the set of M-orbitals $\Delta \in Q$ such that $\Delta \subseteq P$. The next result explores the connection between the existence of a k-TOD and the existence of k-part partitions $\mathcal{B}(Q)$ for the G-orbits Q in $\operatorname{Orbl}(M,\Omega)$. This result underlies our later constructions of cyclic TODs in Section 6.

Actions of a group G on Ω and Ω' are said to be permutationally equivalent if there is a bijection $f \colon \Omega \to \Omega'$ such that, for all $g \in G$ and $\omega \in \Omega$, $(\omega^g)f = (\omega f)^g$. For a transitive subgroup $M \leq \operatorname{Sym}(\Omega)$ and a subset $X \subseteq \operatorname{Orbl}(M,\Omega)$, define $X^* = \{\Delta^* \mid \Delta \in X\}$. We say that X is symmetric if $X = X^*$.

Construction 3.1. Let M be a transitive permutation group on Ω , and let $M \subseteq G \subseteq \operatorname{Sym}(\Omega)$. Suppose that for each G-orbit Q in $\operatorname{Orbl}(M,\Omega)$, there exists a G-invariant partition $\mathcal{B}(Q)$ of Q with k parts. Choose a particular G-orbit Q and let $B \in \mathcal{B}(Q)$. Suppose that the actions induced by G on the $\mathcal{B}(Q)$ are permutationally equivalent, that is, for any other G-orbit Q' in $\operatorname{Orbl}(M,\Omega)$, there exists a bijection $f_{Q'} \colon \mathcal{B}(Q) \to \mathcal{B}(Q')$ such that, for all $C \in \mathcal{B}(Q)$ and all $g \in G$, $(C^g)f_{Q'} = (Cf_{Q'})^g$. Let $J = \{g_1, \ldots, g_k\}$ be a set of coset representatives for the setwise stabiliser G_B in G, and note that $G_B = G_{(B)f_{Q'}}$ for each Q'. Define P_1 to be the union, over all G-orbits Q' in $\operatorname{Orbl}(M,\Omega)$, of all ordered pairs of points contained in M-orbitals in $(B)f_{Q'}$; that is,

$$P_1 = \bigcup_{Q'} (\bigcup_{\Delta \in (B)f_{Q'}} \Delta).$$

Let $P_i = P_1^{g_i}$ for i = 1, ..., k, and let $\mathcal{P} = \{P_1, ..., P_k\}$.

That the 4-tuple (M,G,Ω,\mathcal{P}) produced by this construction is a TOD is proved below.

Lemma 3.2. For M, G, \mathcal{P} as in Construction 3.1, $(M, G, \Omega, \mathcal{P})$ is a k-TOD, and moreover it is symmetric if and only if

- (a) for each symmetric orbit R, each part of the partition $\mathcal{B}(R)$ is symmetric, and
- (b) for each nonsymmetric orbit R, and each $B \in \mathcal{B}(Q)$, we have $(Bf_R)^* = (B)f_{R^*}$.

Proof. Suppose that $(M, G, \Omega, \mathcal{P})$ is a tuple produced in Construction 3.1. Since $G_B = G_{(B)f_{Q'}}$, it follows that $\mathcal{B}(Q') = \{(Bf_{Q'})^{g_i} \mid i = 1, ..., k\}$ for each Q', and therefore \mathcal{P} is a partition of $\Omega^{(2)}$. Moreover,

$$P_i = \bigcup_{Q'} (\bigcup_{\Delta \in Bf_{Q'}} \Delta)^{g_i} = \bigcup_{Q'} (\bigcup_{\Delta' \in (Bf_{Q'})^{g_i}} \Delta') = \bigcup_{Q'} (\bigcup_{\Delta' \in (B^{g_i})f_{Q'}} \Delta').$$

Let $g \in G$. Then a similar argument gives $P_i^g = \bigcup_{Q'} (\bigcup_{\Delta \in (B^{g_ig})f_{Q'}} \Delta) = P_j$, where $B^{g_ig} = B^{g_j}$. Thus \mathcal{P} is G-invariant, and $G^{\mathcal{P}}$ is permutationally equivalent to $G^{\mathcal{B}(Q)}$ and, in particular, is transitive. Thus $(M, G, \Omega, \mathcal{P})$ is a k-TOD.

Suppose that $(M, G, \Omega, \mathcal{P})$ is a symmetric k-TOD, and let R be a symmetric orbit and $B \in \mathcal{B}(R)$. Let $\Delta \in B$, and suppose that $\Delta \subset P$ with $P \in \mathcal{P}$. Since R is symmetric we have $\Delta^* \in R$, and since $(M, G, \Omega, \mathcal{P})$ is symmetric we have $\Delta^* \subseteq P$.

By Construction 3.1, B consists of all orbitals Δ' such that $\Delta' \in R$ and $\Delta' \subseteq P$. Therefore $\Delta^* \in B$. It follows that $B = B^*$ is symmetric. Let R be a nonsymmetric orbit. Let $\Delta \in R$ lie in the block Bf_R of $\mathcal{B}(R)$. Then $\Delta^* \in (Bf_R)^*$ and $\Delta^* \in R^*$. Suppose that $\Delta \in P$, $P \in \mathcal{P}$. Since \mathcal{P} is symmetric, we have $\Delta^* \in P$. By the definition of f_{R^*} , $(B)f_{R^*}$ is the set of orbitals $\Delta^* \in R^*$ that are contained in P. Hence $\Delta^* \in (B)f_{R^*}$, and so $(Bf_R)^* = (B)f_{R^*}$.

Conversely, suppose that, for each symmetric orbit R, each part of the partition $\mathcal{B}(R)$ is symmetric and for each nonsymmetric orbit R and $C \in \mathcal{B}(Q)$, $(C)f_{R^*} = (Cf_R)^*$. We claim that $(M, G, \Omega, \mathcal{P})$ is symmetric. Since $G^{\mathcal{P}}$ is transitive, it is sufficient to prove that $P_1 = P_1^*$. Let $\Delta \subseteq P_1$ lie in an orbit R. If R is symmetric, then Bf_R is the set of orbitals $\Delta' \in R$ such that $\Delta' \in P_1$. Hence $\Delta \in Bf_R$. Now $\Delta^* \in R$ since R is symmetric, and $\Delta^* \in Bf_R$ since the part Bf_R of $\mathcal{B}(R)$ is symmetric, and hence $\Delta^* \subseteq P_1$. Now let R be not symmetric. Again $\Delta \in Bf_R$; so $\Delta^* \in (Bf_R)^* = (B)f_{R^*}$ and, by Construction 3.1, $\Delta^* \subseteq P_1$. Thus $P_1 = P_1^*$; so $(M, G, \Omega, \mathcal{P})$ is symmetric.

Now we obtain a set of necessary and sufficient conditions for the existence of TODs based on the action on $\mathrm{Orbl}(M,\Omega)$.

- **Proposition 3.3.** (i) Let M be a transitive permutation group on Ω , and let $M \leq G \leq \operatorname{Sym}(\Omega)$. Then there exists a partition \mathcal{P} of $\Omega^{(2)}$ such that $(M, G, \Omega, \mathcal{P})$ is a k-TOD if and only if for each G-orbit Q in $\operatorname{Orbl}(M, \Omega)$, there exists a G-invariant partition $\mathcal{B}(Q)$ of Q with k parts, and the actions of G on $\mathcal{B}(Q)$, for all G-orbits Q in $\operatorname{Orbl}(M, \Omega)$, are pairwise permutationally equivalent.
 - (ii) Moreover, there exists a symmetric k-TOD $(M, G, \Omega, \mathcal{P})$ if and only if, in addition, for each symmetric G-orbit Q in $Orbl(M, \Omega)$ (if any such exists), there exists a partition $\mathcal{B}(Q)$ as in part (i), each part of which is symmetric.

Proof. Suppose that there exists $\mathcal{P} = \{P_1, \dots, P_k\}$ such that $(M, G, \Omega, \mathcal{P})$ is a k-TOD. Let $J = \{g_1, \dots, g_k\} \subset G$ be such that $P_1^{g_i} = P_i$ for each i. Since $G^{\mathcal{P}}$ is transitive, each G-orbit Q in $Orbl(M, \Omega)$ contains (at least one) M-orbital $\Delta \subseteq P_1$. Let B_1 be the set of M-orbitals Δ such that $\Delta \in Q$ and $\Delta \subseteq P_1$. For each i, set $B_i = B_1^{g_i}$. Then B_i is the set of M-orbitals Δ such that $\Delta \in Q$ and $\Delta \subseteq P_i$. Thus $\mathcal{B}(Q) = \{B_1, \dots, B_k\}$ is a G-invariant partition of Q with K parts, and $G^{\mathcal{B}(Q)}$ is permutationally isomorphic to $G^{\mathcal{P}}$. Conversely, if suitable G-invariant partitions $\mathcal{B}(Q)$ exist for each Q, then Construction 3.1 gives the required K-TOD by Lemma 3.2. Thus part (i) is proved.

Suppose further that $(M, G, \Omega, \mathcal{P})$ is symmetric, and suppose that Q is a symmetric G-orbit in $Orbl(M,\Omega)$. Then, since $P_1 = P_1^*$, the set B_1 of M-orbitals $\Delta \in Q$ that are contained in P_1 satisfies $B_1^* = B_1$. By the definition of $\mathcal{B}(Q)$ above, each part of $\mathcal{B}(Q)$ is symmetric.

Conversely, suppose that for each symmetric orbit Q, there is a $\mathcal{B}(Q)$ with all parts symmetric. For any such Q, we choose a partition $\mathcal{B}(Q)$ with this extra property. Choose a particular G-orbit Q in $\mathrm{Orbl}(M,\Omega)$, and for each G-orbit R let $f_R \colon \mathcal{B}(Q) \to \mathcal{B}(R)$ be the bijection defining the permutational equivalence of the G-actions (taking f_Q to be the identity map). Suppose that $R \neq R^*$. Then R^* is also a G-orbit in $\mathrm{Orbl}(M,\Omega)$; so, in particular, $R \cap R^* = \emptyset$. If necessary we replace $\mathcal{B}(R^*)$ by $\mathcal{B}^*(R) := \{B^* \mid B \in \mathcal{B}(R)\}$, and we replace f_{R^*} by $f_R^* \colon \mathcal{B}^*(Q) \to \mathcal{B}^*(R)$ defined by $(B)f_R^* = (Bf_R)^*$, for $B \in \mathcal{B}(Q)$. Let $(M, G, \Omega, \mathcal{P})$ be as

in Construction 3.1 using these partitions $\mathcal{B}(R)$. Then by Lemma 3.2, $(G, M, \Omega, \mathcal{P})$ is a symmetric TOD.

3.2. Some TODs derived from a given one. Our first construction varies the partition \mathcal{P}' but involves the same subgroup M.

Lemma 3.4. Let $(M, G, \Omega, \mathcal{P})$ be a k-TOD.

- (1) If \mathcal{P}' is a nontrivial G-invariant partition of $\mathrm{Orbl}(M,\Omega)$ refined by \mathcal{P} , then $k' = |\mathcal{P}'| \geq 2$, k' divides k, and $(M,G,\Omega,\mathcal{P}')$ is a k'-TOD.
- (2) If H < G is such that $H^{\mathcal{P}}$ is semiregular and nontrivial with orbits of length k', and H normalises M, then k'|k, $k' \geq 2$, and $(M, \langle M, H \rangle, \Omega, \mathcal{P}')$ is a k'-TOD for some H-invariant partition \mathcal{P}' refined by \mathcal{P} .
- *Proof.* (1). Since G is transitive on \mathcal{P} and \mathcal{P}' is refined by \mathcal{P} , G is transitive on \mathcal{P}' , and hence $(M, G, \Omega, \mathcal{P}')$ is a TOD of index k' dividing k.
- (2). Choose a representative from each H-orbit in \mathcal{P} , and let P'_1 be the union of these representatives. Set $\mathcal{P}' = \{(P'_1)^h \mid h \in H\}$. Since H is semiregular on \mathcal{P} with orbits of length k', it follows that \mathcal{P}' is an H-invariant partition of $\Omega^{(2)}$ with k' parts and refined by \mathcal{P} .

The next construction is the key both to a reduction to consideration of TODs $(M, G, \Omega, \mathcal{P})$ with G primitive on Ω , and also to the proof of Theorem 1.1. For a partition \mathcal{P} of $\Omega^{(2)}$ and a subset $\Delta \subset \Omega$, by the restriction of \mathcal{P} to $\Delta^{(2)}$ we mean the partition $\mathcal{Q} = \{P_i \cap (\Delta \times \Delta) \mid 1 \leq i \leq k\}$ of $\Delta^{(2)}$. Let $M \leq G \leq \operatorname{Sym}(\Omega)$ with M transitive. For $\Delta \in \operatorname{Orbl}(M,\Omega)$, the paired orbital $\Delta^* = \{(\beta,\alpha) \mid (\alpha,\beta) \in \Delta\}$ also lies in $\operatorname{Orbl}(M,\Omega)$. If G leaves $\operatorname{Orbl}(M,\Omega)$ invariant, then, for each $g \in G$, $(\Delta^*)^g = (\Delta^g)^*$. For a subgroup $N \leq \operatorname{Sym}(\Omega)$ and $\omega \in \Omega$, we denote by ω^N the N-orbit containing ω .

Lemma 3.5. Let $(M, G, \Omega, \mathcal{P})$ be a k-TOD with M normal in G, let $\omega \in \Omega$, and suppose that N is a subgroup of M with no fixed points in Ω . Assume that $E \leq G_{\omega}$ is such that $E^{\mathcal{P}}$ is transitive and $E \leq \mathbf{N}_{G}(N)$. Set F = NE and $\Delta = \omega^{N}$. Then the restriction Q of \mathcal{P} to $\Delta^{(2)}$ is such that $(N^{\Delta}, F^{\Delta}, \Delta, Q)$ is a k-TOD, and $E^{\mathcal{P}}$ is permutationally isomorphic to $F^{\mathcal{Q}}$. Further, if in addition $(M, G, \Omega, \mathcal{P})$ is symmetric, then also $(N^{\Delta}, F^{\Delta}, \Delta, Q)$ is symmetric.

Proof. Let $\mathcal{P} = \{P_1, P_2, \dots, P_k\}$; so $\mathcal{P}(\omega) = \{P_1(\omega), P_2(\omega), \dots, P_k(\omega)\}$. Since \mathcal{P} is refined by $\mathrm{Orbl}(M, \Omega)$, each of the $P_i(\omega)$ is M_{ω} -invariant and hence also N_{ω} -invariant. Thus each $Q_i(\omega) := \Delta \cap P_i(\omega)$ is N_{ω} -invariant. Define $Q(\omega) = \{Q_i(\omega) \mid 1 \leq i \leq k\}$. Observe that $\bigcup_i Q_i(\omega) = \Delta \setminus \{\omega\}$, and if $i \neq j$, then $Q_i(\omega) \cap Q_j(\omega) = \emptyset$; so $Q(\omega)$ is a partition of $\Delta \setminus \{\omega\}$. Also, $Q(\omega)$ is invariant under N_{ω} .

By assumption $E^{\mathcal{P}}$ is transitive, and since $E \leq G_{\omega}$, E also acts transitively on $\mathcal{P}(\omega)$. Further, since E normalises N and fixes ω , it follows that E fixes Δ setwise. Thus, E has an induced action on $Q(\omega)$ given by $Q_i(\omega)^g = \Delta \cap P_i(\omega)^g$ ($g \in E$, $i \leq k$), which is permutationally isomorphic to its actions on $\mathcal{P}(\omega)$ and \mathcal{P} . In particular, E acts transitively on $Q(\omega)$, and all the $Q_i(\omega)$ are nonempty. Note that $F_{\omega} = N_{\omega}E$ and the induced action on $Q(\omega)$ satisfies $F_{\omega}^{Q(\omega)} = (N_{\omega}E)^{Q(\omega)} = E^{Q(\omega)}$. By Lemma 2.3, the corresponding partition Q of $\Omega^{(2)}$ is F-invariant, and the F-action on Q is equivalent to the F_{ω} -action on $Q(\omega)$. Thus F^Q is permutationally isomorphic to $E^{\mathcal{P}}$, and $(N^{\Delta}, F^{\Delta}, \Delta, Q)$ is a k-TOD. From the definition of Q (preceding Lemma 2.3) it is clear that $Q_i \subseteq P_i$ for each i, and therefore $Q_i = P_i \cap (\Delta \times \Delta)$, for $1 \leq i \leq k$.

Assume in addition that $(M, G, \Omega, \mathcal{P})$ is symmetric, that is, each P_i is symmetric. Let $O \in \operatorname{Orbl}(M, \Omega)$, and let $\hat{O} \in \operatorname{Orbl}(N, \Delta)$ be such that $\hat{O}(\omega) \subseteq O(\omega)$. Then $\hat{O}^*(\omega) \subseteq O^*(\omega)$. Assume that $O(\omega) \subseteq P_i(\omega)$. Then, since P_i is symmetric, $O(\omega) \cup O^*(\omega) \subseteq P_i(\omega)$. By the definition of $Q_i(\omega)$, $\hat{O}(\omega) \cup \hat{O}^*(\omega) \subseteq Q_i(\omega)$. It follows that Q_i is symmetric, and so $(N^{\Delta}, F^{\Delta}, \Delta, Q)$ is symmetric. \square

Our final construction is not elementary, since it relies on an application of the result of Fein, Kantor and Schacher [6] that a transitive permutation group contains a fixed-point-free element of prime-power order. This result relies on the finite simple group classification. Recall that we may always assume, for a TOD $(M, G, \Omega, \mathcal{P})$, that M is normal in G and hence that G leaves $Orbl(M, \Omega)$ invariant.

Theorem 3.6. If $(M, G, \Omega, \mathcal{P})$ is a k-TOD with M normal in G, then there exists a p-TOD $(M, H, \Omega, \mathcal{Q})$ for some prime divisor p of k and some partition \mathcal{Q} of $\Omega^{(2)}$ refined by \mathcal{P} , where $H = \langle M, \tau \rangle$ for some $\tau \in G_{\omega} \setminus M_{\omega}$ where $\omega \in \Omega$. In particular, τ fixes no element of $Orbl(M, \Omega)$.

Proof. Let $(M, G, \Omega, \mathcal{P})$ be a k-TOD with M normal in G. Let $\omega \in \Omega$. Since M is transitive, $G = MG_{\omega}$; so $G^{\mathcal{P}} = G_{\omega}^{\mathcal{P}}$. Thus $G_{\omega}^{\mathcal{P}}$ is transitive, and it follows from [6] that, for some prime p, G_{ω} contains an element τ of p-power order such that $\tau^{\mathcal{P}}$ has no fixed points in \mathcal{P} . Label the parts of \mathcal{P} as P_{ij} , so that the i^{th} -orbit of $\langle \tau^{\mathcal{P}} \rangle$ in \mathcal{P} is $\{P_{i,j} \mid 1 \leq j \leq p^{a_i}\}$, $a_i \geq 1$, and $P_{ij}^{\tau} = P_{i,j+1}$ (reading the second subscript modulo p^{a_i}). For $l = 1, \ldots, p$, define $Q_l = \bigcup_i (P_{i,l} \cup P_{i,l+p} \cup \cdots \cup P_{i,l-p+p^{a_i}})$. Then $\mathcal{Q} = \{Q_1, \ldots, Q_p\}$ is permuted cyclically by τ , and \mathcal{Q} is a partition of $\Omega^{(2)}$ refined by \mathcal{P} . Thus $(M, \langle M, \tau \rangle, \Omega, \mathcal{Q})$ is a p-TOD. Since \mathcal{Q} is refined by \mathcal{P} , it is also refined by \mathcal{P} , and it follows that τ acts on \mathcal{O} -robl (M, Ω) with no fixed points. \square

This result has an immediate consequence:

Lemma 3.7. Let (M, G, Ω, P) be a k-TOD such that G has a regular normal subgroup N contained in M. Then N is soluble.

Proof. By Lemma 2.2, $(N, G, \Omega, \mathcal{P})$ is a k-TOD, and then, by Theorem 3.6, there exists an element $\tau \in G \setminus N$ that fixes no element of $\operatorname{Orbl}(N, \Omega)$. Since N is regular on Ω , it follows that τ fixes no non-identity element of N. Thus the automorphism of N induced by conjugation by τ is fixed-point-free, and hence N is soluble, see [9, Thm. 1.48].

4. TODS AND IMPRIMITIVE GROUP ACTIONS

4.1. **TODs on blocks of imprimitivity.** We show that the induced configuration of a k-TOD $(M, G, \Omega, \mathcal{P})$ on a block B of imprimitivity for G on Ω is also a k-TOD. Let $(M, G, \Omega, \mathcal{P})$ be a k-TOD, and let \mathcal{B} be a G-invariant partition of Ω . Let $\mathcal{P}_B := \{P_1^B, P_2^B, \dots, P_k^B\}$, where $P_i^B := P_i \cap (B \times B)$. Then each P_i^B is a union of M_B -orbitals on B, and \mathcal{P}_B is a partition of $\mathcal{B}^{(2)}$. We denote the setwise stabilisers of B in M, G by M_B and G_B , respectively.

Lemma 4.1. Let $(M, G, \Omega, \mathcal{P})$ be a k-TOD with M normal in G. Then for a non-trivial block B of imprimitivity for G^{Ω} , $(M_B^B, G_B^B, B, \mathcal{P}_B)$ is a k-TOD; further, $G^{\mathcal{P}}$ is permutationally isomorphic to $G_B^{\mathcal{P}_B}$.

Proof. The setwise stabiliser M_B has no fixed points in Ω and is normalised by G_{ω} . Also, since $M^{\mathcal{P}} = 1$, we have that $G^{\mathcal{P}} = G_{\omega}^{\mathcal{P}}$ is transitive. The result now follows from Lemma 3.5 applied with $N = M_B$, $E = G_{\omega}$, and $\Delta = B$.

By choosing B to be a minimal block of imprimitivity, we may assume that the group G_B^B is primitive. This suggests studying k-TODs $(M, G, \Omega, \mathcal{P})$ with G primitive on Ω .

Proposition 4.2. Let $(M, G, \Omega, \mathcal{P})$ be a k-TOD such that G is primitive on Ω . Then G^{Ω} is of O'Nan-Scott type HA, AS, SD, CD or PA (as defined in [22]).

Proof. This is an immediate consequence of Lemma 3.7.

Such TODs are investigated further in [10] and, in particular, a classification is obtained of cyclic p^a -TODs where p is a prime. It is shown there, in particular, that there exist TODs corresponding to each of the five O'Nan-Scott types specified in the proposition.

4.2. Quotients of TODs. Let $(M, G, \Omega, \mathcal{P})$ be a TOD and let \mathcal{B} be a G-invariant partition of Ω . There is a natural map from $\Omega^{(2)}$ to $\mathcal{B} \times \mathcal{B}$ given by $(\omega, \omega') \to (B, B')$, where $\omega \in B \in \mathcal{B}$ and $\omega' \in B' \in \mathcal{B}$. This induces a map from subsets of $\Omega^{(2)}$ to subsets of $\mathcal{B} \times \mathcal{B}$. However, there are at least two reasons why, in general, a partition \mathcal{P} of $\Omega^{(2)}$ is not mapped to a partition of $\mathcal{B}^{(2)}$. First there is the problem that distinct points ω, ω' may lie in the same block of \mathcal{B} . One might hope still to achieve a partition of $\mathcal{B}^{(2)}$ simply by ignoring such pairs. However, the second problem is that disjoint subsets of $\Omega^{(2)}$ may correspond to non-disjoint subsets of $\mathcal{B}^{(2)}$. This second problem makes it impossible, in general, to find a natural partition of $\mathcal{B}^{(2)}$ corresponding to a given partition of $\Omega^{(2)}$. In particular, there seems to be no natural construction of a TOD for the actions of M and G on \mathcal{B} from a given TOD $(M, G, \Omega, \mathcal{P})$. This is demonstrated by the following simple example.

Example 4.3. Let $M = \langle (123456789) \rangle \cong \mathbb{Z}_9$, $G = D_{18}$, and $\Omega = \{1, 2, \dots, 9\}$. Then $Orbl(M, \Omega) = \{\Delta_i = (1, i)^M \mid 2 \le i \le 9\}$. Let $P_1 = \Delta_2 \cup \Delta_3 \cup \Delta_4 \cup \Delta_5$ and $P_2 = \Delta_6 \cup \Delta_7 \cup \Delta_8 \cup \Delta_9$. Then $\mathcal{P} = \{P_1, P_2\}$ is a partition of $\Omega^{(2)}$ and $(M, G, \Omega, \mathcal{P})$ is a 2-TOD. Now $B_1 = \{1, 4, 7\}$, $B_2 = \{2, 5, 8\}$ and $B_3 = \{3, 6, 9\}$ form a G-invariant partition \mathcal{B} of Ω , but the images of both P_1 and P_2 , under the map $\Omega^{(2)} \to \mathcal{B} \times \mathcal{B}$ defined above, are $\mathcal{B} \times \mathcal{B}$.

However, we show in the next section that, for a cyclic TOD $(M, G, \Omega, \mathcal{P})$ with G-invariant partition \mathcal{B} of Ω , it is possible to construct an induced quotient TOD on \mathcal{B} of the same index. (This is Theorem 1.2, stated in the introduction.)

5. Cyclic TODs

To prove Theorem 1.2, we first prove a very useful result about cyclic TODs. A similar result can be found in [11].

Proposition 5.1. Let $(M, G, \Omega, \mathcal{P})$ be a cyclic k-TOD and let K be the kernel of the action of G on \mathcal{P} . Then each element $\tau \in G \setminus K$ has exactly one fixed point in Ω .

Proof. Let $\omega \in \Omega$. We have $G = KG_{\omega}$, and so $G = \langle K, \sigma \rangle$ for some $\sigma \in G_{\omega}$. Let $k = \prod_{i=1}^r p_i^{e_i}$ for distinct primes p_i , $e_i \geq 1$, and $r \geq 1$. Let $\tau \in G \setminus K$. Then there exists i such that the order of τ modulo K is divisible by p_i , and hence $\tau \notin \langle K, \sigma^{p_i^{e_i}} \rangle$. Let $\hat{\mathcal{P}}$ be the partition of $\Omega^{(2)}$ such that each part is the union of the parts of \mathcal{P} contained in some orbit of $\langle (\sigma^{p_i^{e_i}})^{\mathcal{P}} \rangle$. Then by Lemma 3.4(1), $(M, G, \Omega, \hat{\mathcal{P}})$ is a cyclic $p_i^{e_i}$ -TOD. Set $\hat{M} = \langle K, \sigma^{p_i^{e_i}} \rangle$. Then by Lemma 2.2, $(\hat{M}, G, \Omega, \hat{\mathcal{P}})$ is a cyclic

 $p_i^{e_i}$ -TOD, and \hat{M} is the kernel of the action of G on $\hat{\mathcal{P}}$. There is a p_i -element σ' such that $G = \langle \hat{M}, \sigma' \rangle = \langle \hat{M}, \sigma \rangle$ (taking σ' to be the " p_i -part" of σ).

Then $\tau = x(\sigma')^l$ for some $x \in \hat{M}$ and some integer l not divisible by $p_i^{e_i}$. Since x fixes $\hat{\mathcal{P}}$ pointwise, the $\langle \tau \rangle$ -action on $\hat{\mathcal{P}}$ is equivalent to the action of $\langle \sigma^l \rangle$ on $\hat{\mathcal{P}}$. Thus $\langle \tau \rangle$ is nontrivial and half-transitive on $\hat{\mathcal{P}}$. In particular, τ fixes no element of $\hat{\mathcal{P}}$, and so τ fixes no $(\omega, \omega') \in \Omega^{(2)}$ for any distinct $\omega, \omega' \in \Omega$. Hence τ fixes at most one point of Ω .

If τ has p_i -power order, then, since $p_i \nmid |\Omega|$ by Lemma 2.5, τ fixes at least one point of Ω , so that it fixes exactly one point of Ω .

Suppose now that the order $o(\tau) = n_1 n_2$ is such that n_1 is a p_i -power, $\gcd(n_1, n_2) = 1$, and $n_2 > 1$, and write $\tau = \tau_1 \tau_2$ such that $o(\tau_i) = n_i$ and $\tau_1 \tau_2 = \tau_2 \tau_1$. Since $|G: \hat{M}| = p_i^{e_i}$, it follows that $\tau_2 \in \hat{M}$, and therefore τ_1 is of p_i -power order and lies in $G \setminus \hat{M}$. By the argument of the previous paragraph, τ_1 has exactly one fixed point in Ω . Let $\Delta_1, \Delta_2, \ldots, \Delta_t$ be the $\langle \tau \rangle$ -orbits in Ω . Since $\langle \tau_1 \rangle$ is a normal subgroup of $\langle \tau \rangle$, we have that $\langle \tau_1 \rangle$ acts on each Δ_j half-transitively. Thus either $\langle \tau_1 \rangle$ acts on Δ_j trivially, or $|\Delta_j|$ is divisible by p_i . Since τ_1 has exactly one fixed point in Ω , it follows that exactly one of the Δ_j has size 1 and all the others have size a multiple of p_i . Therefore, τ fixes exactly one point in Ω .

Now we deduce a corollary for imprimitive cyclic TODs.

Lemma 5.2. Let $(M, G, \Omega, \mathcal{P})$ be a cyclic k-TOD. Let K be the kernel of the G-action on \mathcal{P} , and let \mathcal{B} be a nontrivial G-invariant partition of Ω . Then each element of $G \setminus K$ fixes exactly one block of \mathcal{B} .

Proof. Here $G = \langle K, \sigma \rangle$ for some $\sigma \in G$ such that $\sigma^k \in K$ and $G/K \cong \mathbb{Z}_k$. Then, by Lemma 2.2, $(K, G, \Omega, \mathcal{P})$ is a cyclic k-TOD. Write $\mathcal{B} = \{B_0, B_1, \ldots, B_t\}$ for some $t \geq 2$. Let $\tau \in G \setminus K$. By Proposition 5.1, τ fixes a point of Ω and hence fixes setwise a block of \mathcal{B} , say B_0 . Now $\tau = f\sigma^r$ for some integer r and $f \in K$, and τ has order k_0 modulo K for some $k_0|k$ with $k_0 > 1$. Since K acts trivially on \mathcal{P} , $\langle \tau^{\mathcal{P}} \rangle = \langle (\sigma^r)^{\mathcal{P}} \rangle$ has k/k_0 orbits of length k_0 in \mathcal{P} . Let $\mathcal{P} = \{P_1, P_2, \ldots, P_k\}$, and observe that, for any $i \neq 0$,

$$(P_1 \cap (B_0 \times B_i)) \cup \cdots \cup (P_k \cap (B_0 \times B_i)) = B_0 \times B_i$$
, and $(P_j \cap (B_0 \times B_i)) \cap (P_{j'} \cap (B_0 \times B_i)) = \emptyset$ if $j \neq j'$,

where $B_0 \times B_i = \{(\omega, \omega') \mid \omega \in B_0, \ \omega' \in B_i\}$. Suppose that τ fixes B_i setwise for some $i \in \{1, 2, ..., t\}$. Then $(B_0 \times B_i)^{\tau} = B_0 \times B_i$, and for any $j \in \{1, 2, ..., k\}$, there exists $j' \in \{1, 2, ..., k\}$ such that

$$(P_j \cap (B_0 \times B_i))^{\tau} = P_{j'} \cap (B_0 \times B_i).$$

If $P_j \cap (B_0 \times B_i) \neq \emptyset$, then for each of the k_0 parts $P_{j'}$ in the $\langle \tau^{\mathcal{P}} \rangle$ -orbit containing P_j , we have $|P_j \cap (B_0 \times B_i)| = |P_{j'} \cap (B_0 \times B_i)|$. Since this is true for all $\langle \tau^{\mathcal{P}} \rangle$ -orbits, it follows that k_0 divides $|B_0 \times B_i|$. However, by Lemma 4.1, $(K_{B_0}, G_{B_0}^{B_0}, B_0, \mathcal{P}_{B_0})$ is a k-TOD, and hence by Lemma 2.5, $|B_0| \equiv 1 \pmod{k}$. Therefore, $|B_0 \times B_i| = |B_0|^2 \equiv 1 \pmod{k}$, and so $|B_0 \times B_i| \equiv 1 \pmod{k_0}$, which is a contradiction since $k_0 > 1$. Therefore, B_0 is the unique fixed block of τ .

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let K be the kernel of G acting on \mathcal{P} . Then $G/K \cong \mathbb{Z}_k$, and $G = \langle K, \sigma \rangle$ for some $\sigma \in G$ such that σ normalises K and $\sigma^k \in K$. Since K

is transitive on Ω , we have that $G = KG_{\omega}$, where $\omega \in \Omega$. Hence $\sigma = f\sigma'$ where $f \in K$ and $\sigma' \in G_{\omega}$. Since f fixes every element of \mathcal{P} , $\langle \sigma' \rangle$ induces a transitive action on \mathcal{P} . Thus, without loss of generality, we may assume that $\sigma \in G_{\omega}$. Let $\mathcal{B} = \{B_0, B_1, \ldots, B_t\}$ be a G-invariant partition of Ω such that $\omega \in B_0$. Then in particular $B_0^{\sigma} = B_0$, and hence σ normalises K_{B_0} . Let \mathcal{D} be the set of K_{B_0} -orbits in $\Omega \setminus B_0$. Then \mathcal{D} is $\langle \sigma \rangle$ -invariant.

Let $\mathcal{P} = \{P_1, P_2, \dots, P_k\}$ be such that $P_i^{\sigma} = P_{i+1}$ for each i < k and $P_k^{\sigma} = P_1$, and let $\mathcal{P}(B_0) = \{P_1(B_0), P_2(B_0), \dots, P_k(B_0)\}$, where

$$P_i(B_0) = \{ \alpha \in \Omega \setminus B_0 \mid (\beta, \alpha) \in P_i, \text{ for some } \beta \in B_0 \}.$$

Then

$$P_i(B_0)^{\sigma} = \{ \alpha^{\sigma} \in \Omega \setminus B_0 \mid (\beta^{\sigma}, \alpha^{\sigma}) \in P_i^{\sigma}, \text{ for some } \beta^{\sigma} \in B_0 \} = P_{i+1}(B_0),$$

reading the subscripts modulo k. Since K_{B_0} acts trivially on \mathcal{P} , it follows that K_{B_0} fixes each $P_i(B_0)$ setwise, and hence each $P_i(B)$ is a union of some subset of \mathcal{D} .

Suppose that $\Delta \in \mathcal{D}$ is contained in $P_1(B_0)$, and suppose that $B \in \mathcal{B} \setminus \{B_0\}$ is such that $B \cap \Delta$ contains a point α . Suppose further that $1 \leq i \leq k$, and $B \cap \Delta^{\sigma^i}$ also contains a point, say β . Then $\beta = \delta^{\sigma^i}$ for some $\delta \in \Delta$, and since K_{B_0} is transitive on Δ , $\delta = \alpha^g$ for some $g \in K_{B_0}$. Thus $\beta = \alpha^{g\sigma^i} \in B \cap B^{g\sigma^i}$, and hence $g\sigma^i$ fixes B. However, $g\sigma^i \in G_{B_0}$ and $B \neq B_0$. It follows from Lemma 5.2 that $g\sigma^i \in K$. Hence $\sigma^i \in K$, and so i = k. Thus the k sets $\Delta, \Delta^{\sigma}, \ldots, \Delta^{\sigma^{k-1}} \in \mathcal{D}$ meet disjoint subsets of $\mathcal{B} \setminus \{B_0\}$. Moreover, $\Delta^{\sigma^i} \subseteq (P_1(B_0))^{\sigma^i} = P_{i+1}(B_0)$ for each i < k.

For a K_{B_0} -orbit Δ , let $\mathcal{B}(\Delta)$ denote the subset of blocks B of $\mathcal{B}\setminus\{B_0\}$ such that $B\cap\Delta\neq\emptyset$. Suppose that $\mathcal{B}(\Delta)\cap\mathcal{B}(\Delta')$ (where $\Delta,\Delta'\in\mathcal{D}$) contains a block B, and let B' be an arbitrary block in $\mathcal{B}(\Delta)$. Then, since $B\cap\Delta\neq\emptyset$, $B'\cap\Delta\neq\emptyset$, and Δ is a K_{B_0} -orbit, some element $x\in K_{B_0}$ maps a point of $B\cap\Delta$ to a point of $B'\cap\Delta$, and hence $B^x=B'$. Since Δ' is a K_{B_0} -orbit, we have $(B\cap\Delta')^x=B'\cap\Delta'$, and therefore $B'\in\mathcal{B}(\Delta')$. Thus $\mathcal{B}(\Delta)\subseteq\mathcal{B}(\Delta')$, and a similar argument proves that $\mathcal{B}(\Delta')\subseteq\mathcal{B}(\Delta)$. Thus, for $\Delta,\Delta'\in\mathcal{D}$, $\mathcal{B}(\Delta)$ and $\mathcal{B}(\Delta')$ are either equal or disjoint. It may happen that $\mathcal{B}(\Delta)=\mathcal{B}(\Delta')$ for distinct K_{B_0} -orbits Δ,Δ' , but we have just proved that, in this case, Δ and Δ' lie in different $\langle\sigma\rangle$ -orbits. Thus $\langle\sigma\rangle$ permutes the set $\{\mathcal{B}(\Delta)\mid\Delta\in\mathcal{D}\}$ with all orbits of length k. Suppose that $\langle\sigma\rangle$ has m orbits in this set, and suppose, without loss of generality, that $\mathcal{B}(\Delta_1),\ldots,\mathcal{B}(\Delta_m)$ are representatives of these m orbits. Define $Q_1(B_0):=\mathcal{B}(\Delta_1)\cup\cdots\cup\mathcal{B}(\Delta_m)$ and, for $2\leq i\leq k$, set $Q_i(B_0):=(Q_1(B_0))^{\sigma^{i-1}}$, and set $\mathcal{Q}(B_0):=\{Q_i(B_0)\mid 1\leq i\leq k\}$. Then $\langle\sigma\rangle$ is transitive on $\mathcal{Q}(B_0)$, and it follows from Lemma 2.3 that $(M^B,G^B,\mathcal{B},\mathcal{Q})$ is a cyclic k-TOD, where $\mathcal{Q}=\{Q_1,\ldots,Q_k\}$ with $Q_i=\{(B_0,B)^g\mid B\in Q_i(B_0),g\in G\}$ (as defined before Lemma 2.3).

6. Explicit construction for cyclic TODs

For a cyclic k-TOD $(M, G, \Omega, \mathcal{P})$, we may assume by Lemma 2.2 that M is normal in G and therefore that there exists $\sigma \in G \setminus M$ such that σ normalises M and $\langle \sigma \rangle$ acts transitively on \mathcal{P} . The following is a consequence of Proposition 3.3, and gives a criterion for a transitive permutation group M to give rise to a cyclic TOD.

Lemma 6.1. Let M be a transitive permutation group on Ω , and let

$$\sigma \in \mathbf{N}_{\mathrm{Sym}(\Omega)}(M)$$
 and $G = \langle M, \sigma \rangle < \mathrm{Sym}(\Omega)$.

Then there exists a partition \mathcal{P} of $\Omega^{(2)}$ such that

- (i) $(M, G, \Omega, \mathcal{P})$ is a k-TOD if and only if k divides the size of each $\langle \sigma \rangle$ -orbit on $Orbl(M, \Omega)$;
- (ii) $(M, G, \Omega, \mathcal{P})$ is a symmetric k-TOD if and only if k divides the size of each $\langle \sigma \rangle$ -orbit on $Orbl(M, \Omega)$, and for each $\Delta \in Orbl(M, \Omega)$ and each $\tau \in \langle \sigma \rangle \setminus \langle \sigma^k \rangle$, $\Delta^{\tau} \neq \Delta^*$, where Δ^* is the paired orbital of Δ .

Proof. Part (i) follows immediately from Proposition 3.3. For part (ii), the extra condition is that, for each symmetric $\langle \sigma \rangle$ -orbit Q in $\mathrm{Orbl}(M,\Omega)$, there exists a symmetric k-part partition $\mathcal{B}(Q)$ with appropriate $\langle \sigma \rangle$ -action. Now Q is a symmetric $\langle \sigma \rangle$ -orbit if and only if $Q = Q^*$, that is, $\Delta^* \in Q$ whenever $\Delta \in Q$. We require that each part $B \in \mathcal{B}(Q)$ should be symmetric, that is, $\Delta^* \in B$ whenever $\Delta \in B$. Since $\mathcal{B}(Q) = \{B^{\sigma^i} \mid 0 \leq i < k\}$, this condition implies that, for each $\Delta \in \mathrm{Orbl}(M,\Omega)$, $\Delta^{\sigma^i} \neq \Delta^*$ for $i = 1, \ldots, k-1$ (either because Δ and Δ^* lie in different $\langle \sigma \rangle$ -orbits, or because they lie in the same block B of $\mathcal{B}(Q)$, where $\Delta, \Delta^* \in Q$). Conversely, the condition $\Delta^{\sigma^i} \neq \Delta^*$ for all Δ and for $i = 1, \ldots, k-1$ enables us to define a G-invariant partition with all parts symmetric, for each symmetric G-orbit G. (Take G = G and G invariant partition with all parts symmetric, for each symmetric G-orbit G.)

If an element $\sigma \in \mathbf{N}_{\mathrm{Sym}(\Omega)}(M)$ has p-power order with p prime, and σ fixes no element of $\mathrm{Orbl}(M,\Omega)$, then p divides the size of every $\langle \sigma \rangle$ -orbit on $\mathrm{Orbl}(M,\Omega)$. Suppose that τ is an automorphism of M that normalises a point stabilizer in M. Then τ is induced by some element $\tilde{\tau} \in \mathrm{Sym}(\Omega)$ such that $\tilde{\tau} \in \mathbf{N}_{\mathrm{Sym}(\Omega)}(M)$. Thus $\tilde{\tau}$ acts on $\mathrm{Orbl}(M,\Omega)$. By Lemma 6.1, we have a criterion for a transitive permutation group to have a TOD of prime index in terms of certain special automorphisms of the group.

Corollary 6.2. A transitive group M acting on Ω has a TOD of prime index p if and only if M has an automorphism τ of p-power order such that τ normalises some point stabiliser in M, and $\tilde{\tau}$ fixes no element of $Orbl(M,\Omega)$, where $\tilde{\tau}$ is as above.

To conclude this section, we construct explicit examples of cyclic TODs for all values of n and k occurring in Theorem 1.1.

Construction 6.3. Let $n = r_1^{d_1} \dots r_m^{d_m}$, where the r_i are distinct primes, $d_i \geq 1$ and $m \geq 1$. Let $M = \mathbb{Z}_{r_1}^{d_1} \times \dots \times \mathbb{Z}_{r_m}^{d_m}$. Then $\operatorname{Aut}(M) = \prod_{i=1}^m \operatorname{GL}(d_i, r_i) \geq \prod_{i=1}^m \operatorname{GL}(1, r_i^{d_i})$.

(a) Suppose that $r_i^{d_i} \equiv 1 \pmod{k}$ for each i. Choose $\sigma_i \in GL(1, r_i^{d_i})$ such that σ_i is of order k. Let $\sigma = \sigma_1 \dots \sigma_m \in Aut(M)$. Take $P_1(1)$ to consist of one representative of each of the $\langle \sigma \rangle$ -orbits in $M \setminus \{1\}$, and set

$$P_1 = \{(x, y) \mid x, y \in M, xy^{-1} \in P_1(1)\}, \text{ and } \mathcal{P} = \{P_1^{\sigma^i} \mid 0 \le i < k\}.$$

(b) Suppose that $r_i^{d_i} \equiv 1 \pmod{2k}$ whenever r_i is odd, and $r_i^{d_i} \equiv 1 \pmod{k}$ if $r_i = 2$. For each i, if r_i is odd, then let $\sigma_i \in \mathrm{GL}(1, r_i^{d_i})$ have order 2k, and if $r_i = 2$,

let $\sigma_i \in GL(1, r_i^{d_i})$ have order k. Let $\sigma = \sigma_1 \sigma_2 \dots \sigma_r \in Aut(M)$. Take $P_1(1)$ to consist of one representative of each of the $\langle \sigma \rangle$ -orbits in $M \setminus \{1\}$, and set

$$P_1 = \{(x, y) \mid x, y \in M, xy^{-1} \in P_1(1)\}, \text{ and }$$

$$\mathcal{P} = \{P_1^{\sigma^i} \mid 0 \le i < k\}.$$

The next lemma shows that these constructions produce cyclic k-TODs.

- **Lemma 6.4.** (i) For $M, \sigma, \mathcal{P}, n, k$ as in Construction 6.3 (a), $(M, \langle M, \sigma \rangle, M, \mathcal{P})$ is a cyclic k-TOD of degree n; if in addition k is odd, then $(M, \langle M, \sigma \rangle, M, \mathcal{P})$ is a symmetric cyclic k-TOD of degree n.
 - (ii) For $M, \sigma, \mathcal{P}, n, k$ as in Construction 6.3 (b), $(M, \langle M, \sigma \rangle, M, \mathcal{P})$ is a symmetric cyclic k-TOD of degree n.

Proof. The cyclic group $\operatorname{GL}(1, r_i^{d_i})$ is regular on $\mathbb{Z}_{r_i}^{d_i} \setminus \{1\}$, and hence $\prod_{i=1}^m \operatorname{GL}(1, r_i^{d_i})$ is semiregular on $M \setminus \{1\}$. Thus in both constructions (given in Construction 6.3) $\langle \sigma \rangle$ acts semiregularly on $M \setminus \{1\}$, and so $\langle \sigma \rangle$ acts on $\operatorname{Orbl}(M, M)$ with all orbits of length k in part (i) and length 2k or k in part (ii). It follows from Lemma 6.1 that in both cases, $(M, \langle M, \sigma \rangle, M, \mathcal{P})$ is a cyclic k-TOD.

Now suppose that $M, \sigma, \mathcal{P}, n, k$ are as in Construction 6.3 (a) with k odd, or as in Construction 6.3 (b). We show that the condition of Lemma 6.1 (ii) holds. Suppose to the contrary that $\Delta^{\sigma^i} = \Delta^*$, where $\Delta \in \operatorname{Orbl}(M, M)$ and $\sigma^i \notin \langle \sigma^k \rangle$. Then in particular $k \nmid i$. Now $\Delta(1) = \{x\}$ for some $x \in M \setminus \{1\}$, and $\Delta^*(1) = \{x^{-1}\}$. Since σ^i fixes 1, $x^{\sigma^i} = x^{-1}$, and so $x^{\sigma^{2i}} = x$. Now all $\langle \sigma \rangle$ -orbits in $M \setminus \{1\}$ have length 2k or k. Since $x^{\sigma^{2i}} = x$, we have that $k \mid 2i$. Since $k \nmid i$, k must be even. Thus the proof of part (i) is complete. Continuing with the proof of part (ii), by Lemma 2.5, n is odd. It then follows from the definition of σ that all $\langle \sigma \rangle$ -orbits in $M \setminus \{1\}$ have length 2k. Hence $2k \mid 2i$ and $k \mid i$, which is a contradiction. So $\Delta^{\sigma^i} \neq \Delta^*$, satisfying Lemma 6.1 (ii).

7. Degrees and indices

In this section, we prove a relation between index k and degree n for a cyclic k-TOD of degree n, and complete the proof of Theorem 1.1. First, we show that if $(M, G, \Omega, \mathcal{P})$ is a cyclic TOD, then some Sylow subgroups induce cyclic TODs. For a prime r, by $r^a || n$ we mean that r^a is the highest power of r dividing n.

Lemma 7.1. Let $(M, G, \Omega, \mathcal{P})$ be a cyclic p^e -TOD of degree n with M normal in G, where p is a prime and $G = \langle M, \sigma \rangle$ for some element σ of p-power order. Let r be a prime such that $r^d || n$ with d > 0, and let R be a Sylow r-subgroup of M. Then there exist an element $\sigma_0 \in G$, an orbit Σ of R in Ω , and a partition Q of $\Sigma^{(2)}$ such that $(R, \langle R, \sigma_0 \rangle, \Sigma, Q)$ is a cyclic p^e -TOD of degree r^d . If in addition $(M, G, \Omega, \mathcal{P})$ is symmetric, then $(R, \langle R, \sigma_0 \rangle, \Sigma, Q)$ is also symmetric.

Proof. There exists $l \geq d$ such that $r^l = |R|$, so that r^{l-d} is the order of a Sylow r-subgroup of M_{ω} , where $\omega \in \Omega$. Let τ be an arbitrary element of $G \setminus \langle M, \sigma^p \rangle$. Then $\langle M, \sigma^p, \tau \rangle = G$. By Lemma 5.1, τ fixes a unique point in Ω , and we denote the point by ω_{τ} . Thus $\tau \in G_{\omega_{\tau}}$, and it follows that τ normalises the point-stabilizer $M_{\omega_{\tau}}$.

Let $\rho \in G \setminus \langle M, \sigma^p \rangle$, and let S be a Sylow r-subgroup of $M_{\omega_{\rho}}$. Then $|S| = r^{l-d}$, and S^{ρ} is also a Sylow r-subgroup of $M_{\omega_{\rho}}$. By Sylow's theorem, $S^{\rho} = S^g$ for some $g \in M_{\omega_{\rho}}$. Thus $S^{\rho'} = S$, where $\rho' := \rho g^{-1} \in G \setminus \langle M, \sigma^p \rangle$. Since both ρ and g fix ω_{ρ} ,

we have that ρ' fixes ω_{ρ} . Hence by Lemma 5.1, $\omega_{\rho'} = \omega_{\rho}$. Thus S is an r-subgroup of M for which there exists an element $\rho' \in G \setminus \langle M, \sigma^p \rangle$ such that $S^{\rho'} = S$ and $|S_{\omega_{\rho'}}| = r^{l-d}$.

Assume now that X is maximal by inclusion among r-subgroups of M such that there exists $\tau \in G \setminus \langle M, \sigma^p \rangle$ satisfying

$$X^{\tau} = X$$
 and $|X_{\omega_{\tau}}| = r^{l-d}$.

Let $N = \mathbf{N}_M(X)$, and let Y be a Sylow r-subgroup of N. Note that N has no fixed points in Ω , for if S is a Sylow r-subgroup of M containing X, then $\mathbf{N}_S(X)$ properly contains X, and hence has no fixed points in Ω . Now τ normalises N, $X \subseteq Y$, and Y^{τ} is a Sylow r-subgroup of N. Thus $Y^{\tau} = Y^x$ for some $x \in N$, and so $Y^{\hat{\tau}} = Y$, where $\hat{\tau} := \tau x^{-1}$. Let $\Delta = \omega_{\tau}^N$, the orbit of N containing ω_{τ} . Since τ fixes ω_{τ} and normalises N, we have that τ fixes Δ setwise. Thus, in particular, $\Delta^{\hat{\tau}} = \Delta^{\tau x^{-1}} = \Delta$. By Lemma 3.5, $(N, \langle N, \tau \rangle, \Delta, \mathcal{P}')$ is a cyclic p^e -TOD for some partition \mathcal{P}' of $\Delta^{(2)}$. Thus by Lemma 5.1, $\hat{\tau}$ fixes a point of Δ , and so $\omega_{\hat{\tau}} \in \Delta$. Since N is transitive on Δ , we have $\omega_{\tau}^y = \omega_{\hat{\tau}}$ for some $y \in N$, and thus $X_{\omega_{\tau}}^y \leq N_{\omega_{\tau}}^y = N_{\omega_{\hat{\tau}}}$. So $X_{\omega_{\tau}}^y \leq X^y \cap N_{\omega_{\hat{\tau}}} = X \cap N_{\omega_{\hat{\tau}}} = X_{\omega_{\hat{\tau}}}$. Hence $r^{l-d} = |X_{\omega_{\tau}}| = |X_{\omega_{\tau}}^y| \leq |X_{\omega_{\tau}}| \leq |Y_{\omega_{\hat{\tau}}}|$. However, since $r^{l-d} ||M_{\omega_{\hat{\tau}}}|$, we have that $|Y_{\omega_{\hat{\tau}}}| = r^{l-d}$. Therefore, Y is an r-subgroup of M such that $Y^{\hat{\tau}} = Y$ and $|Y_{\omega_{\hat{\tau}}}| = r^{l-d}$. By the maximality of X, we have Y = X. Thus X is a Sylow r-subgroup of $\mathbf{N}_M(X)$, and hence X is a Sylow r-subgroup of M. In particular, $|X| = r^l$ and X has no fixed points in Ω .

By Sylow's theorem, $R = X^g$ for some $g \in M$. Let $\tau_0 = \tau^g$. Then by Lemma 3.5 applied to R and $K = \langle R, \tau_0 \rangle$, there exists a p^e -TOD $(R, \langle R, \tau_0 \rangle, \Sigma, \mathcal{Q})$, where $\Sigma = \omega_{\tau_0}^R$ and $|\Sigma| = |R: R_{\omega_{\tau_0}}| = r^d$. If in addition $(M, \langle M, \sigma \rangle, \Omega, \mathcal{P})$ is symmetric, then by Lemma 3.5, $(R, \langle R, \tau_0 \rangle, \Sigma, \mathcal{Q})$ is symmetric.

We now give a relation between the degrees and indices of cyclic k-TODs in the case where k is a prime-power.

Lemma 7.2. Let p be a prime, and let $n = r_1^{d_1} r_2^{d_2} \dots r_m^{d_m}$ where the r_i are distinct primes.

- (i) If there exists a p^e -TOD of degree n, then $r_i^{d_i} \equiv 1 \pmod{p^e}$, for all r_i .
- (ii) If there exists a symmetric p^e -TOD of degree n, then $r_i^{d_i} \equiv 1 \pmod{2p^e}$ for all odd r_i , and $r_i^{d_i} \equiv 1 \pmod{p^e}$ if $r_i = 2$.

Proof. Let $(M, G, \Omega, \mathcal{P})$ be a cyclic p^e -TOD of degree n, where $G = \langle M, \sigma \rangle$ for some element $\sigma \in G$ of p-power order. Let r be a prime such that $r^d || n$ with d > 0. Let R be a Sylow r-subgroup of M. By Lemma 7.1, there exists a p^e -TOD $(R, \langle R, \tau \rangle, \Sigma, \mathcal{Q})$ of degree r^d . Thus, by Lemma 2.5, $r^d \equiv 1 \pmod{p^e}$. If in addition $(M, \langle M, \sigma \rangle, \Omega, \mathcal{P})$ is symmetric, then by Lemma 7.1, $(R, \langle R, \tau \rangle, \Sigma, \mathcal{Q})$ is symmetric. Thus by Lemma 2.5, either $r^d \equiv 1 \pmod{2p^e}$, or r = 2 and $2^d \equiv 1 \pmod{p^e}$. \square

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. If k is a prime-power, then Theorem 1.1 follows from Lemmas 6.4 and 7.2. Thus we may assume that k is not a prime-power. Let $(M, G, \Omega, \mathcal{P})$ be a cyclic k-TOD of degree n. Write $k = p_1^{e_1} p_2^{e_2} \dots p_l^{e_l}$, where p_i are distinct primes, $e_i \geq 1$, and $l \geq 2$. Let $\sigma \in G \setminus M$ be such that $\langle \sigma \rangle$ is transitive on \mathcal{P} . Recall that we may take $\sigma \in G_{\omega}$. Let $k_i = k/p_i^{e_i}$, and let $\sigma_i = \sigma^{k_i}$. Then $\langle \sigma_i \rangle$ acts half-transitively

on \mathcal{P} , and each $\langle \sigma_i \rangle$ -orbit on \mathcal{P} has size $p_i^{e_i}$. Hence $\langle \sigma_i \rangle$ acts on the set of M-orbitals such that each orbit has size divisible by $p_i^{e_i}$. By Lemma 6.1, there exists a cyclic $p_i^{e_i}$ -TOD $(M, \langle M, \sigma_i \rangle, \Omega, \mathcal{P}_i)$ for some partition \mathcal{P}_i of $\Omega^{(2)}$. By Lemma 7.2, if r is a prime and $r^d ||\Omega|$, then $r^d \equiv 1 \pmod{p_i^{e_i}}$. It then follows that $r^d \equiv 1 \pmod{k}$.

Assume further that $(M, G, \Omega, \mathcal{P})$ is symmetric. By Lemma 3.5 (taking N = M and $E = \langle \sigma \rangle \leq G_{\omega}$), $(M, \langle M, \sigma_i \rangle, \Omega, \mathcal{P}_i)$ is symmetric. By Lemma 7.2, if r is odd and $r^d ||\Omega|$, then $r^d \equiv 1 \pmod{2p_i^{e_i}}$. It then follows that $r^d \equiv 1 \pmod{2k}$ if r is odd.

The converse assertion of Theorem 1.1 follows from Lemma 6.4. \Box

References

- [1] B. Alspach, J. Morris and V. Vilfred, Self-complementary circulant graphs, Ars Combinatoria 53 (1999), 187–191. MR 2001b:05184
- [2] P. Cameron, Finite permutation groups and finite simple groups, Bull. London Math. Soc 13 (1981), 1-22. MR 83m:20008
- [3] N. J. Calkin, P. Erdös and C. A. Tovey, New Ramsey bounds from cyclic graphs of prime order, Siam J. Discrete Math. 10 (1997), 381-387. MR 98e:05078
- [4] V. Chvátal, P. Erdős and Z. Hedrlín, Ramsey's theorem and self-complementary graphs, Disc. Math. 3(1972), 301-304. MR 47:1674
- [5] C. R. J. Clapham, A class of self-complementary graphs and lower bounds of some Ramsey numbers, J. Graph Theory 3 (1979), 287-289. MR 81d:05054
- [6] B. Fein, W. M. Kantor and M. Schacher, Relative Brauer groups II. J. Reine Angew. Math. 328 (1981), 39–57. MR 83a:12018
- [7] M. Fried, R. Guralnick and J. Saxl, Schur covers and Carlitz's conjecture, Israel J. Math. 82 (1993), 157-225. MR 94j:12007
- [8] D. Fronček, A. Rosa and J. Širan, The existence of self-complementary circulant graphs, European J. Combin. 17 (1996), 625-628. MR 97d:05235
- [9] D. Gorenstein, Finite Simple Groups, 1982, Plenum Press, New York. MR 84j:20002
- [10] R. M. Guralnick, C. H. Li, C. E. Praeger and J. Saxl, On orbital partitions and exceptionality of primitive permutation groups, preprint.
- [11] R. M. Guralnick, P. Müller and J. Saxl, The rational function analogue of a question of Schur and exceptionality of permutation representations, Mem. Amer. Math. Soc. (to appear)
- [12] F. Harary, R. W. Robinson and N. C. Wormald, Isomorphic factorisations I: Complete graphs. Trans. Amer. Math. Soc. 242 (1978), 243–260. MR 58:27646a
- [13] F. Harary and R. W. Robinson, Isomorphic factorisations X: unsolved problems, J. Graph Theory 9 (1985), 67-86. MR 87a:05111
- [14] R. Jajcay and C. H. Li, Constructions of self-complementary circulants with no multiplicative isomorphisms, European J. Combin. 22 (2001), 1093-1100. MR 2002g:05098
- [15] C. H. Li, On self-complementary vertex-transitive graphs, Comm. Algebra 25 (1997), 3903-3908. MR 98k:05119
- [16] C. H. Li, T. K. Lim and C. E. Praeger, Homogeneous factorisations of complete graphs with edge-transitive factors, in preparation.
- [17] C. H. Li and C. E. Praeger, Self-complementary vertex-transitive graphs need not be Cayley graphs, Bull. London Math. Soc. 33 (2001), 653-661. MR 2002h:05085
- [18] V. Liskovets and R. Pöschel, Non-Cayley-isomorphic self-complementary circulant graphs, J. Graph Theory 34 (2000), 128-141. MR 2001e:05056
- [19] R. Mathon, On selfcomplementary strongly regular graphs, Disc. Math. 69 (1988), 263-281.MR 89d:05150
- [20] M. Muzychuk, On Sylow subgraphs of vertex-transitive self-complementary graphs, Bull. London Math. Soc. 31 (1999), 531-533. MR 2001i:05093
- [21] W. Peisert, All self-complementary symmetric graphs, J. Algebra 240 (2001), 209-229. MR 2002e:05074
- [22] C. E. Praeger, Finite quasiprimitive graphs, Surveys in Combinatorics 1997 (London), 65-85, London Math. Soc. Lecture Notes series 241, (Cambridge Univ. Press, Cambridge, 1997). MR 99b:05076

- [23] S. B. Rao, On regular and strongly regular selfcomplementary graphs, Disc. Math. 54 (1985), 73-82. MR 86g:05089
- [24] H. Sachs, Über selbstkomplementäre Graphen, Publ. Math. Debrecen 9 (1962), 270-288. MR 27:1934
- [25] D. A. Suprunenko, Selfcomplementary graphs, Cybernetics 21 (1985), 559-567. MR 87g:05197
- $[26]\,$ M. Suzuki, $Group\,$ Theory I, (Springer, New York 1982). MR $\bf 82k:$ 20001c
- [27] B. Zelinka, Self-complementary vertex-transitive undirected graphs, Math. Slovaca 29 (1979), 91-95. MR 81h:05116
- [28] H. Zhang, Self-complementary symmetric graphs, J. Graph Theory ${\bf 16}$ (1992), 1-5. MR ${\bf 92k:}05061$

Department of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia

 $E ext{-}mail\ address: li@maths.uwa.edu.au}$

Department of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia

E-mail address: praeger@maths.uwa.edu.au